228 research outputs found

    Representation Learning for Clustering: A Statistical Framework

    Full text link
    We address the problem of communicating domain knowledge from a user to the designer of a clustering algorithm. We propose a protocol in which the user provides a clustering of a relatively small random sample of a data set. The algorithm designer then uses that sample to come up with a data representation under which kk-means clustering results in a clustering (of the full data set) that is aligned with the user's clustering. We provide a formal statistical model for analyzing the sample complexity of learning a clustering representation with this paradigm. We then introduce a notion of capacity of a class of possible representations, in the spirit of the VC-dimension, showing that classes of representations that have finite such dimension can be successfully learned with sample size error bounds, and end our discussion with an analysis of that dimension for classes of representations induced by linear embeddings.Comment: To be published in Proceedings of UAI 201

    Sample-Efficient Learning of Mixtures

    Full text link
    We consider PAC learning of probability distributions (a.k.a. density estimation), where we are given an i.i.d. sample generated from an unknown target distribution, and want to output a distribution that is close to the target in total variation distance. Let F\mathcal F be an arbitrary class of probability distributions, and let Fk\mathcal{F}^k denote the class of kk-mixtures of elements of F\mathcal F. Assuming the existence of a method for learning F\mathcal F with sample complexity mF(ϵ)m_{\mathcal{F}}(\epsilon), we provide a method for learning Fk\mathcal F^k with sample complexity O(klogkmF(ϵ)/ϵ2)O({k\log k \cdot m_{\mathcal F}(\epsilon) }/{\epsilon^{2}}). Our mixture learning algorithm has the property that, if the F\mathcal F-learner is proper/agnostic, then the Fk\mathcal F^k-learner would be proper/agnostic as well. This general result enables us to improve the best known sample complexity upper bounds for a variety of important mixture classes. First, we show that the class of mixtures of kk axis-aligned Gaussians in Rd\mathbb{R}^d is PAC-learnable in the agnostic setting with O~(kd/ϵ4)\widetilde{O}({kd}/{\epsilon ^ 4}) samples, which is tight in kk and dd up to logarithmic factors. Second, we show that the class of mixtures of kk Gaussians in Rd\mathbb{R}^d is PAC-learnable in the agnostic setting with sample complexity O~(kd2/ϵ4)\widetilde{O}({kd^2}/{\epsilon ^ 4}), which improves the previous known bounds of O~(k3d2/ϵ4)\widetilde{O}({k^3d^2}/{\epsilon ^ 4}) and O~(k4d4/ϵ2)\widetilde{O}(k^4d^4/\epsilon ^ 2) in its dependence on kk and dd. Finally, we show that the class of mixtures of kk log-concave distributions over Rd\mathbb{R}^d is PAC-learnable using O~(d(d+5)/2ϵ(d+9)/2k)\widetilde{O}(d^{(d+5)/2}\epsilon^{-(d+9)/2}k) samples.Comment: A bug from the previous version, which appeared in AAAI 2018 proceedings, is fixed. 18 page
    corecore